
NSQL, still valuable even in the 
Modern UX



I have been working in the Project Management 
Software consulting business since 1993, 
starting with Artemis, and then onto ABT, Niku 
and through it’s rebranding to today and Clarity 
PPM.

About Me

Andrew Litton
2007 - TODAY

Pemari Consulting Ltd



Session Agenda
NSQL, still valuable even in the Modern UX

Background
Column Annotations
Filters/Parameters
Other Annotations



Background
NSQL, still valuable even in the Modern UX



Where is NSQL used?
§ In lookups

• when selecting Dynamic Query on lookup create

§ Portlets – as a Query type data provider

• One query can be used by many portlets

§ XOG Query Soap Calls

• Can call the query directly



Why is NSQL still useful with the Modern UX

§ Lookup attributes are available within the Modern UX

§ Project Channels enable the embedding of Portlet Pages within the Project 
screens 



Queries
§ Queries created in Classic PPM within Administration Queries

§ Queries can retrieve data from:

• the Clarity PPM transactional database (Niku)

• the Clarity PPM data warehouse (Data Warehouse)

• Any other CSA configured database, i.e. Jaspersoft, using New External Connection



What is NSQL?

An annotated SQL Select statement

SELECT
@SELECT:c.prid:id@,
@SELECT:c.prname:name@,
@SELECT:p.prname:parentname@,
@SELECT:c.prmodtime:last_updated_date@

FROM  prcalendar c
LEFT OUTER JOIN prcalendar p
ON c.prbasecalendarid = p.prid

WHERE c.prresourceid IS NULL
AND @FILTER@

Note annotations start and end with @

SELECT
c.prid id,
c.prname name,
p.prname parentname,
c.prmodtime last_updated_date

FROM prcalendar c
LEFT OUTER JOIN prcalendar p
ON c.prbasecalendarid = p.prid

WHERE c.prresourceid IS NULL
AND 1=1



Column annotations
NSQL, still valuable even in the Modern UX



Anatomy of a Select Statement

SELECT <columns> Each column must use @SELECT:…@

FROM <table references> Sub queries are ok to use

WHERE <where clauses> Must contain at least @FILTER@

GROUP BY <group columns> Aggregates data

HAVING <having clauses> Filtering data uses @HAVING_FILTER@

ORDER BY <order columns> Controllable in Clarity



SELECT Column Annotations

§ 2 formats

• For Lookups

@SELECT:<Table.Field>:<Label>@

• For Queries

@SELECT:DIM:USER_DEF:IMPLIED:<DIMENSION>:<Table.Field>:<Label>@



SELECT Column Annotations: Lookups

@SELECT:<Table.Field>:<Label>@

Table.Field the SQL column

Label used in Clarity as the Attribute ID and Label

SELECT
@SELECT:c.prid:id@,
@SELECT:c.prname:name@,
@SELECT:p.prname:parentname@,
@SELECT:c.prmodtime:last_updated_date@

FROM  prcalendar c
LEFT OUTER JOIN prcalendar p
ON c.prbasecalendarid = p.prid

WHERE c.prresourceid IS NULL
AND @FILTER@



SELECT Column Annotations: Queries
§ The format is a little more involved

§ Annotation provides information to Clarity to enable grouping/pivoting/charting data in 
Portlets

§ 3 types of Query SELECT annotation

• Dimension

• Dimension Property

• Metric



SELECT Column Annotations: Dimension

@SELECT:DIM:USER_DEF:IMPLIED:<DIMENSION>:<Table.Field>:<Label>@

§ DIM indicates the column is the primary key for the dimension

§ There can be only one DIM column per dimension and there MUST be at least 1 
dimension defined in an NSQL statement.

§ <DIMENSION> is a user defined name for the dimension, i.e. Project or Resource

§ IMPLIED tells Clarity to derive the attribute type from the SQL Result. 



SELECT Column Annotations: Dimension Property

@SELECT:DIM_PROP:USER_DEF:IMPLIED:<DIMENSION>:<Table.Field>:<Label>@

§ DIM_PROP indicates the column is a property of a dimension

§ There can be many DIM_PROP columns per dimension

§ <DIMENSION> is the name of the defined dimension, i.e. Project or Resource



SELECT Column Annotations: Metric

@SELECT:METRIC:USER_DEF:IMPLIED:<Table.Field>:<Label>[:AGG]@

§ METRIC note no DIMENSION

§ There can be many metric columns

§ Can be totalled on a grid or displayed as a value  on a chart

§ [:AGG] optional construct and allows the metric to be filtered in the SQL HAVING clause

@SELECT:METRIC:USER_DEF:IMPLIED:COUNT(*):no_projects:AGG@



SELECT Column Annotations: Example Query
Resource Availability by Month



SELECT Column Annotations: Example Query
Resource Availability by Month

hours – is a metric

Two Dimensions – SLICEDATE and RESOURCE



SELECT Column Annotations: Example Grid Portlet
Resource Availability by Month



Filters/Parameters
NSQL, still valuable even in the Modern UX



WHERE Annotations: FILTER
@FILTER@

§ @FILTER@ is replaced on execution with WHERE clauses based on the portlet or lookup 
filters

SELECT
@SELECT:R.ID:ID@,
@SELECT:R.UNIQUE_NAME:UNAME@,
@SELECT:R.FULL_NAME:FULLNAME@,
@SELECT:R.IS_ACTIVE:ACTIVE@,
@SELECT:R.PERSON_TYPE:PERSON_TYPE@

FROM SRM_RESOURCES R
WHERE @FILTER@

§ @FILTER@ allows Clarity to filter the columns defined in the @SELECT@ annotations



WHERE Annotations: PARAMS
@WHERE:PARAM:…….@

§ A number of sources

• From filters

• Built in

• From the page URL

§ Do not need to be one of the @SELECT@ annotations

§ Can be located in different sub queries 



WHERE Annotations: Built In Parameters

@WHERE:PARAM:USER_ID

@WHERE :PARAM:USER_NAME@

@WHERE :PARAM:LOCALE@

@WHERE :PARAM:LANGUAGE@

§ Commonly used for security and the selection of the relevant lookup value language



WHERE Annotations: Built In Lookup Example

SELECT
@SELECT:R.ID:ID@,
@SELECT:R.UNIQUE_NAME:UNAME@,
@SELECT:R.FULL_NAME:FULLNAME@,
@SELECT:L.NAME:PERSON_TYPE@,
@SELECT:R.PERSON_TYPE:PERSON_TYPE_ID@,
@SELECT:L.LANGUAGE_CODE:LANGUAGE_CODE@        

FROM SRM_RESOURCES R         
LEFT OUTER JOIN CMN_LOOKUPS_V L
ON R.PERSON_TYPE=L.ID
AND L.LOOKUP_TYPE='SRM_RESOURCE_TYPE'
AND L.LANGUAGE_CODE=@WHERE:PARAM:LANGUAGE@        

WHERE R.IS_ACTIVE=1
AND @FILTER@

SELECT
@SELECT:R.ID:ID@,
@SELECT:R.UNIQUE_NAME:UNAME@,
@SELECT:R.FULL_NAME:FULLNAME@,
@SELECT:L.NAME:PERSON_TYPE@,
@SELECT:R.PERSON_TYPE:PERSON_TYPE_ID@,
@WHERE:PARAM:LANGUAGE@ LANGUAGE_CODE       

FROM SRM_RESOURCES R         
LEFT OUTER JOIN CMN_LOOKUPS_V L
ON R.PERSON_TYPE=L.ID
AND L.LOOKUP_TYPE='SRM_RESOURCE_TYPE'
AND L.LANGUAGE_CODE=@WHERE:PARAM:LANGUAGE@

WHERE R.IS_ACTIVE=1
AND @FILTER@



WHERE Annotations: User Defined Parameters 
@WHERE:PARAM:USER_DEF:<DATA_TYPE>:PARAM_NAME@

§ <DATA_TYPE> value can be STRING, INTEGER, or, DATE

§ PARAM_NAME is the name of the attribute displayed within Clarity PPM

Although FLOAT is accepted Query displays this as a numeric

§ 2nd Form optional and enables support for Multiple Selection.

§ COLUMN_NAME is the SQL column name for the condition

@WHERE:PARAM:USER_DEF:<DATA_TYPE>:<COLUMN_NAME>:PARAM_NAME@



WHERE Annotations: User Defined Example 1 
Investment Team Availability by Month



WHERE Annotations: User Defined Example 1 
Investment Team Availability by Month



WHERE Annotations: User Defined Example 1 
Investment Team Availability by Month

• Change Field Extended type to 
Lookup - Numeric

• Pick the relevant lookup

• Portlet filter can display a browse field 
for the project selection



WHERE Annotations: User Defined Example 1 
Investment Team Availability by Month



WHERE Annotations: User Defined Example 2 
Investment Team Availability by Month



WHERE Annotations: User Defined Example 2 
Investment Team Availability by Month



WHERE Annotations: User Defined Example 2 
Investment Team Availability by Month

• Change Field Extended type to 
Lookup - Numeric

• Pick the relevant lookup

• Portlet filter can use a Multiple Select 
browse field for the project selection



WHERE Annotations: User Defined Example 2 
Investment Team Availability by Month



WHERE Annotations: XML Parameters
@WHERE:PARAM:XML:<DATA_TYPE>:<xpath>@

• Obtains value from the URL of the page of the portlet

• Example : A dashboard page within Project with a URL

https://centos.vm.pemari.com/niku/nu#action:SYSTEM5130026&id=5048013

• So define an XML Parameter to read the id and only display values for the project

@WHERE:PARAM:XML:INTEGER:/data/id/@value@



WHERE Annotations: XML Example
Investment Team Availability by Month



WHERE Annotations: XML Example
Investment Team Availability by Month

Note:  Queries can have links defined as well to 
enable linking from the portlet to another 
page



WHERE Annotations: XML Example
Investment Team Availability by Month



Security Annotation

@WHERE:SECURITY:PROJECT:<entity_id>@

@WHERE:SECURITY:RESOURCE:<entity_id>@

§ Only Project and Resource annotation is supported

§ Can only be used in WHERE clause

§ Replaces annotation with SQL where clause



Security Annotation: Examples
SELECT
@SELECT:R.ID:ID@,
@SELECT:R.UNIQUE_NAME:UNAME@,
@SELECT:R.FULL_NAME:FULLNAME@

FROM SRM_RESOURCES R
WHERE R.IS_ACTIVE = 1
AND @WHERE:SECURITY:RESOURCE:R.ID@
AND @FILTER@

SELECT
@SELECT:DIM:USER_DEF:IMPLIED:RESOURCE:R.ID:ID@,
@SELECT:DIM_PROP:USER_DEF:IMPLIED:RESOURCE:R.UNIQUE_NAME:UNAME@,
@SELECT:DIM_PROP:USER_DEF:IMPLIED:RESOURCE:R.FULL_NAME:FULLNAME@

FROM SRM_RESOURCES R
WHERE R.IS_ACTIVE = 1
AND @WHERE:SECURITY:RESOURCE:R.ID@
AND @FILTER@



Other Annotations
NSQL, still valuable even in the Modern UX



Dynamic Lookups: @BROWSE-ONLY

SELECT
@SELECT:R.ID:ID@,
@SELECT:R.UNIQUE_NAME:UNAME@,
@SELECT:R.FULL_NAME:FULLNAME@

FROM SRM_RESOURCES R
WHERE 
@BROWSE-ONLY:

R.IS_ACTIVE = 1 AND
@WHERE:SECURITY:RESOURCE:R.ID@ AND

:BROWSE-ONLY@
@FILTER@

§ In UI whilst browsing to select on 
active resources that you have rights 
to displayed.

§ If subsequently, selected resource is 
inactivated, then UI would not 
display the value..

§ With BROWSE-ONLY, SQL within the 
annotation is only included whilst 
browsing.



Hierarchical Queries

Enables expansion of row and 
display of sub rows

Can have many levels 



Hierarchical Queries

@WHERE:PARAM:USER_DEF:STRING:hg_row_id@

Select dimension property named hg_has_children

• Unique for all rows in the dimension

• If null – then does not show [+]

• Passed to the query on clicking the [+] as the hg_row_id
parameter

• Set to value of clicked [+] row hg_has_children
attribute

• Initial value on portlet display is NULL



Hierarchical Queries

@WHERE:PARAM:USER_DEF:STRING:hg_all_rows@

• Used for Export to Excel

• Set to 1 when exporting otherwise 
NULL

• Used to enable/disable sub levels from 
being exported



Hierarchical Queries

Common SQL Structure

SELECT @SELECT….
FROM
(

SELECT <the parent Level>
UNION
SELECT <the first child level>
UNION
SELECT <the next child level>
UNION
….

)
WHERE @FILTER@

hg_has_children must uniquely identify the 
data to retrieve or not retrieve in each of 
the sub-queries

Some examples can be found on the 
Resource Utilisation page – uses OBS



Hierarchical Queries
Example

SELECT @SELECT:DIM:USER_DEF:IMPLIED:DATA:ID:ID@,
@SELECT:DIM_PROP:USER_DEF:IMPLIED:DATA:CODE:CODE@,
@SELECT:DIM_PROP:USER_DEF:IMPLIED:DATA:NAME:NAME@,
@SELECT:DIM_PROP:USER_DEF:IMPLIED:DATA:STARTDATE:STARTDATE@,
@SELECT:DIM_PROP:USER_DEF:IMPLIED:DATA:HG_HAS_CHILDREN:HG_HAS_CHILDREN@

FROM (
SELECT I.ID ID, I.CODE CODE, I.NAME NAME, I.SCHEDULE_START STARTDATE,
MAX(CASE WHEN T.PRID IS NULL THEN NULL ELSE I.ID END) HG_HAS_CHILDREN

FROM INV_INVESTMENTS I
LEFT OUTER JOIN PRTASK T ON I.ID = T.PRPROJECTID

WHERE I.ODF_OBJECT_CODE = 'project'
AND @WHERE:PARAM:USER_DEF:STRING:HG_ROW_ID@ IS NULL

GROUP BY I.ID, I.CODE, I.NAME, I.SCHEDULE_START
UNION
SELECT T.PRID ID, T.PREXTERNALID CODE, T.PRNAME NAME, T.PRSTART STARTDATE,
NULL HG_HAS_CHILDREN

FROM PRTASK T
WHERE @WHERE:PARAM:USER_DEF:STRING:HG_ROW_ID@ IS NOT NULL

AND T.PRPROJECTID=@WHERE:PARAM:USER_DEF:STRING:HG_ROW_ID@
)
WHERE @FILTER@



Hierarchical Queries
Example



Hierarchical Queries
Example



Hierarchical Queries
Advice

Filtering: Implement filters using Parameters

Export: When using hg_all_rows, export does not sort rows based on the hierarchy

Layout: All levels must have the same field layout

Sorting: All levels use the same field sorting so add a column for sort order



NSQL, still valuable even in the Modern UX

Questions?



Thank you for attending
NSQL, still valuable even in the Modern UX

Phone
+44 844 736 2500

Email
ppmacademy@pemari.com

Website
www.pemari.com

Let us know how we can 
improve!

Don’t forget to fill out the 
feedback forms!

mailto:ppmacademy@pemari.com
https://www.pemari.com/

