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Background
NSQL, still valuable even in the Modern UX



Where is NSQL used?
§ In lookups

• when selecting Dynamic Query on lookup create

§ Portlets – as a Query type data provider

• One query can be used by many portlets

§ XOG Query Soap Calls

• Can call the query directly



Why is NSQL still useful with the Modern UX

§ Lookup attributes are available within the Modern UX

§ Project Channels enable the embedding of Portlet Pages within the Project 
screens 



Queries
§ Queries created in Classic PPM within Administration Queries

§ Queries can retrieve data from:

• the Clarity PPM transactional database (Niku)

• the Clarity PPM data warehouse (Data Warehouse)

• Any other CSA configured database, i.e. Jaspersoft, using New External Connection



What is NSQL?

An annotated SQL Select statement

SELECT
@SELECT:c.prid:id@,
@SELECT:c.prname:name@,
@SELECT:p.prname:parentname@,
@SELECT:c.prmodtime:last_updated_date@

FROM  prcalendar c
LEFT OUTER JOIN prcalendar p
ON c.prbasecalendarid = p.prid

WHERE c.prresourceid IS NULL
AND @FILTER@

Note annotations start and end with @

SELECT
c.prid id,
c.prname name,
p.prname parentname,
c.prmodtime last_updated_date

FROM prcalendar c
LEFT OUTER JOIN prcalendar p
ON c.prbasecalendarid = p.prid

WHERE c.prresourceid IS NULL
AND 1=1



Column annotations
NSQL, still valuable even in the Modern UX



Anatomy of a Select Statement

SELECT <columns> Each column must use @SELECT:…@

FROM <table references> Sub queries are ok to use

WHERE <where clauses> Must contain at least @FILTER@

GROUP BY <group columns> Aggregates data

HAVING <having clauses> Filtering data uses @HAVING_FILTER@

ORDER BY <order columns> Controllable in Clarity



SELECT Column Annotations

§ 2 formats

• For Lookups

@SELECT:<Table.Field>:<Label>@

• For Queries

@SELECT:DIM:USER_DEF:IMPLIED:<DIMENSION>:<Table.Field>:<Label>@



SELECT Column Annotations: Lookups

@SELECT:<Table.Field>:<Label>@

Table.Field the SQL column

Label used in Clarity as the Attribute ID and Label

SELECT
@SELECT:c.prid:id@,
@SELECT:c.prname:name@,
@SELECT:p.prname:parentname@,
@SELECT:c.prmodtime:last_updated_date@

FROM  prcalendar c
LEFT OUTER JOIN prcalendar p
ON c.prbasecalendarid = p.prid

WHERE c.prresourceid IS NULL
AND @FILTER@



SELECT Column Annotations: Queries
§ The format is a little more involved

§ Annotation provides information to Clarity to enable grouping/pivoting/charting data in 
Portlets

§ 3 types of Query SELECT annotation

• Dimension

• Dimension Property

• Metric



SELECT Column Annotations: Dimension

@SELECT:DIM:USER_DEF:IMPLIED:<DIMENSION>:<Table.Field>:<Label>@

§ DIM indicates the column is the primary key for the dimension

§ There can be only one DIM column per dimension and there MUST be at least 1 
dimension defined in an NSQL statement.

§ <DIMENSION> is a user defined name for the dimension, i.e. Project or Resource

§ IMPLIED tells Clarity to derive the attribute type from the SQL Result. 



SELECT Column Annotations: Dimension Property

@SELECT:DIM_PROP:USER_DEF:IMPLIED:<DIMENSION>:<Table.Field>:<Label>@

§ DIM_PROP indicates the column is a property of a dimension

§ There can be many DIM_PROP columns per dimension

§ <DIMENSION> is the name of the defined dimension, i.e. Project or Resource



SELECT Column Annotations: Metric

@SELECT:METRIC:USER_DEF:IMPLIED:<Table.Field>:<Label>[:AGG]@

§ METRIC note no DIMENSION

§ There can be many metric columns

§ Can be totalled on a grid or displayed as a value  on a chart

§ [:AGG] optional construct and allows the metric to be filtered in the SQL HAVING clause

@SELECT:METRIC:USER_DEF:IMPLIED:COUNT(*):no_projects:AGG@



SELECT Column Annotations: Example Query
Resource Availability by Month



SELECT Column Annotations: Example Query
Resource Availability by Month

hours – is a metric

Two Dimensions – SLICEDATE and RESOURCE



SELECT Column Annotations: Example Grid Portlet
Resource Availability by Month



Filters/Parameters
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WHERE Annotations: FILTER
@FILTER@

§ @FILTER@ is replaced on execution with WHERE clauses based on the portlet or lookup 
filters

SELECT
@SELECT:R.ID:ID@,
@SELECT:R.UNIQUE_NAME:UNAME@,
@SELECT:R.FULL_NAME:FULLNAME@,
@SELECT:R.IS_ACTIVE:ACTIVE@,
@SELECT:R.PERSON_TYPE:PERSON_TYPE@

FROM SRM_RESOURCES R
WHERE @FILTER@

§ @FILTER@ allows Clarity to filter the columns defined in the @SELECT@ annotations



WHERE Annotations: PARAMS
@WHERE:PARAM:…….@

§ A number of sources

• From filters

• Built in

• From the page URL

§ Do not need to be one of the @SELECT@ annotations

§ Can be located in different sub queries 



WHERE Annotations: Built In Parameters

@WHERE:PARAM:USER_ID

@WHERE :PARAM:USER_NAME@

@WHERE :PARAM:LOCALE@

@WHERE :PARAM:LANGUAGE@

§ Commonly used for security and the selection of the relevant lookup value language



WHERE Annotations: Built In Lookup Example

SELECT
@SELECT:R.ID:ID@,
@SELECT:R.UNIQUE_NAME:UNAME@,
@SELECT:R.FULL_NAME:FULLNAME@,
@SELECT:L.NAME:PERSON_TYPE@,
@SELECT:R.PERSON_TYPE:PERSON_TYPE_ID@,
@SELECT:L.LANGUAGE_CODE:LANGUAGE_CODE@        

FROM SRM_RESOURCES R         
LEFT OUTER JOIN CMN_LOOKUPS_V L
ON R.PERSON_TYPE=L.ID
AND L.LOOKUP_TYPE='SRM_RESOURCE_TYPE'
AND L.LANGUAGE_CODE=@WHERE:PARAM:LANGUAGE@        

WHERE R.IS_ACTIVE=1
AND @FILTER@

SELECT
@SELECT:R.ID:ID@,
@SELECT:R.UNIQUE_NAME:UNAME@,
@SELECT:R.FULL_NAME:FULLNAME@,
@SELECT:L.NAME:PERSON_TYPE@,
@SELECT:R.PERSON_TYPE:PERSON_TYPE_ID@,
@WHERE:PARAM:LANGUAGE@ LANGUAGE_CODE       

FROM SRM_RESOURCES R         
LEFT OUTER JOIN CMN_LOOKUPS_V L
ON R.PERSON_TYPE=L.ID
AND L.LOOKUP_TYPE='SRM_RESOURCE_TYPE'
AND L.LANGUAGE_CODE=@WHERE:PARAM:LANGUAGE@

WHERE R.IS_ACTIVE=1
AND @FILTER@



WHERE Annotations: User Defined Parameters 
@WHERE:PARAM:USER_DEF:<DATA_TYPE>:PARAM_NAME@

§ <DATA_TYPE> value can be STRING, INTEGER, or, DATE

§ PARAM_NAME is the name of the attribute displayed within Clarity PPM

Although FLOAT is accepted Query displays this as a numeric

§ 2nd Form optional and enables support for Multiple Selection.

§ COLUMN_NAME is the SQL column name for the condition

@WHERE:PARAM:USER_DEF:<DATA_TYPE>:<COLUMN_NAME>:PARAM_NAME@



WHERE Annotations: User Defined Example 1 
Investment Team Availability by Month



WHERE Annotations: User Defined Example 1 
Investment Team Availability by Month



WHERE Annotations: User Defined Example 1 
Investment Team Availability by Month

• Change Field Extended type to 
Lookup - Numeric

• Pick the relevant lookup

• Portlet filter can display a browse field 
for the project selection



WHERE Annotations: User Defined Example 1 
Investment Team Availability by Month



WHERE Annotations: User Defined Example 2 
Investment Team Availability by Month



WHERE Annotations: User Defined Example 2 
Investment Team Availability by Month



WHERE Annotations: User Defined Example 2 
Investment Team Availability by Month

• Change Field Extended type to 
Lookup - Numeric

• Pick the relevant lookup

• Portlet filter can use a Multiple Select 
browse field for the project selection



WHERE Annotations: User Defined Example 2 
Investment Team Availability by Month



WHERE Annotations: XML Parameters
@WHERE:PARAM:XML:<DATA_TYPE>:<xpath>@

• Obtains value from the URL of the page of the portlet

• Example : A dashboard page within Project with a URL

https://centos.vm.pemari.com/niku/nu#action:SYSTEM5130026&id=5048013

• So define an XML Parameter to read the id and only display values for the project

@WHERE:PARAM:XML:INTEGER:/data/id/@value@



WHERE Annotations: XML Example
Investment Team Availability by Month



WHERE Annotations: XML Example
Investment Team Availability by Month

Note:  Queries can have links defined as well to 
enable linking from the portlet to another 
page



WHERE Annotations: XML Example
Investment Team Availability by Month



Security Annotation

@WHERE:SECURITY:PROJECT:<entity_id>@

@WHERE:SECURITY:RESOURCE:<entity_id>@

§ Only Project and Resource annotation is supported

§ Can only be used in WHERE clause

§ Replaces annotation with SQL where clause



Security Annotation: Examples
SELECT
@SELECT:R.ID:ID@,
@SELECT:R.UNIQUE_NAME:UNAME@,
@SELECT:R.FULL_NAME:FULLNAME@

FROM SRM_RESOURCES R
WHERE R.IS_ACTIVE = 1
AND @WHERE:SECURITY:RESOURCE:R.ID@
AND @FILTER@

SELECT
@SELECT:DIM:USER_DEF:IMPLIED:RESOURCE:R.ID:ID@,
@SELECT:DIM_PROP:USER_DEF:IMPLIED:RESOURCE:R.UNIQUE_NAME:UNAME@,
@SELECT:DIM_PROP:USER_DEF:IMPLIED:RESOURCE:R.FULL_NAME:FULLNAME@

FROM SRM_RESOURCES R
WHERE R.IS_ACTIVE = 1
AND @WHERE:SECURITY:RESOURCE:R.ID@
AND @FILTER@



Other Annotations
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Dynamic Lookups: @BROWSE-ONLY

SELECT
@SELECT:R.ID:ID@,
@SELECT:R.UNIQUE_NAME:UNAME@,
@SELECT:R.FULL_NAME:FULLNAME@

FROM SRM_RESOURCES R
WHERE 
@BROWSE-ONLY:

R.IS_ACTIVE = 1 AND
@WHERE:SECURITY:RESOURCE:R.ID@ AND

:BROWSE-ONLY@
@FILTER@

§ In UI whilst browsing to select on 
active resources that you have rights 
to displayed.

§ If subsequently, selected resource is 
inactivated, then UI would not 
display the value..

§ With BROWSE-ONLY, SQL within the 
annotation is only included whilst 
browsing.



Hierarchical Queries

Enables expansion of row and 
display of sub rows

Can have many levels 



Hierarchical Queries

@WHERE:PARAM:USER_DEF:STRING:hg_row_id@

Select dimension property named hg_has_children

• Unique for all rows in the dimension

• If null – then does not show [+]

• Passed to the query on clicking the [+] as the hg_row_id
parameter

• Set to value of clicked [+] row hg_has_children
attribute

• Initial value on portlet display is NULL



Hierarchical Queries

@WHERE:PARAM:USER_DEF:STRING:hg_all_rows@

• Used for Export to Excel

• Set to 1 when exporting otherwise 
NULL

• Used to enable/disable sub levels from 
being exported



Hierarchical Queries

Common SQL Structure

SELECT @SELECT….
FROM
(

SELECT <the parent Level>
UNION
SELECT <the first child level>
UNION
SELECT <the next child level>
UNION
….

)
WHERE @FILTER@

hg_has_children must uniquely identify the 
data to retrieve or not retrieve in each of 
the sub-queries

Some examples can be found on the 
Resource Utilisation page – uses OBS



Hierarchical Queries
Example

SELECT @SELECT:DIM:USER_DEF:IMPLIED:DATA:ID:ID@,
@SELECT:DIM_PROP:USER_DEF:IMPLIED:DATA:CODE:CODE@,
@SELECT:DIM_PROP:USER_DEF:IMPLIED:DATA:NAME:NAME@,
@SELECT:DIM_PROP:USER_DEF:IMPLIED:DATA:STARTDATE:STARTDATE@,
@SELECT:DIM_PROP:USER_DEF:IMPLIED:DATA:HG_HAS_CHILDREN:HG_HAS_CHILDREN@

FROM (
SELECT I.ID ID, I.CODE CODE, I.NAME NAME, I.SCHEDULE_START STARTDATE,
MAX(CASE WHEN T.PRID IS NULL THEN NULL ELSE I.ID END) HG_HAS_CHILDREN

FROM INV_INVESTMENTS I
LEFT OUTER JOIN PRTASK T ON I.ID = T.PRPROJECTID

WHERE I.ODF_OBJECT_CODE = 'project'
AND @WHERE:PARAM:USER_DEF:STRING:HG_ROW_ID@ IS NULL

GROUP BY I.ID, I.CODE, I.NAME, I.SCHEDULE_START
UNION
SELECT T.PRID ID, T.PREXTERNALID CODE, T.PRNAME NAME, T.PRSTART STARTDATE,
NULL HG_HAS_CHILDREN

FROM PRTASK T
WHERE @WHERE:PARAM:USER_DEF:STRING:HG_ROW_ID@ IS NOT NULL

AND T.PRPROJECTID=@WHERE:PARAM:USER_DEF:STRING:HG_ROW_ID@
)
WHERE @FILTER@



Hierarchical Queries
Example



Hierarchical Queries
Example



Hierarchical Queries
Advice

Filtering: Implement filters using Parameters

Export: When using hg_all_rows, export does not sort rows based on the hierarchy

Layout: All levels must have the same field layout

Sorting: All levels use the same field sorting so add a column for sort order



NSQL, still valuable even in the Modern UX

Questions?



Thank you for attending
NSQL, still valuable even in the Modern UX

Phone
+44 844 736 2500

Email
ppmacademy@pemari.com

Website
www.pemari.com

Let us know how we can 
improve!

Don’t forget to fill out the 
feedback forms!

mailto:ppmacademy@pemari.com
https://www.pemari.com/

